Metals and Materials

What spring materials are available?

All MW Components locations are familiar with common spring and fastener materials. In addition, select locations have in-depth experience with more advanced application-specific materials. These include titanium alloys, nickel-based alloys, beryllium copper and other special high-temperature alloys. Contact us with your needs and our engineers will work with you to develop a solution with the right material and processing for your application.

What types of corrosion prevention options are available?

Our facilities have a variety of in-house finishes available. These include electrostatic powder epoxy or polyester (GM Type III approved) and an assortment of wet coating processes for painting or color-coding. We also maintain relationships with a supply base that can provide a full range of plating and coating systems. Simple oil-based and water-based rust preventives are always available for short-term protection.

What are the advantages and properties of stainless steel springs?

Stainless steel springs offer better appearance and corrosion resistance. They also offer some unique properties not obtainable in carbon steel springs.

Why is stainless steel better for industrial use than carbon steel?

Stainless steel is resistant to corrosion and chemical media, making it ideal for use in industrial manufacturing. Carbon steel, while stronger and more naturally magnetic than stainless steel, may rust and corrode when exposed to moisture. If you need a magnetic metal, cold working increases magnetism in stainless steel.

Is Inconel 718 the best material for springs operating at high temperatures?

Inconel 718 has material properties that make it very well suited for high temperature springs. It maintains its strength at temperatures in excess of 1,000°F as well or better than any high nickel material on the market. However, there are several factors to consider when choosing an Inconel material for your spring application.

The type of spring you use will help with your decision. Inconel 718 is typically available only in annealed sheet or bar form. If you are using a flat spring at these elevated temperatures, Inconel 718 is generally going to be the right choice. If your spring is a compression spring or extension spring using round wire, Inconel X750 might be the best choice because it is much more available as a wire product than 718. It can be used at temperatures in excess of 1,200°F if it is properly sized and designed for the application. There is even a special heat-treat cycle for the X750 which can help with these applications, though it is costly and time consuming to perform.

Another thing to consider is the volume of springs required in your production. If you are designing for a large production volume and have the time and budget for having spring wire custom-drawn, then Inconel 718 can be made into spring-tempered wire without a large impact. If your needs are for short-run, small-batch orders of round wire springs, then the readily available sizes of Inconel X750 should be considered since there are a number of wire vendors that stock it.

Spring Life and Properties

How is a spring's fatigue life predicted?

We analyze our spring’s fatigue life predictions using methods consistent with SAE and SMI guidelines. Essentially, the minimum and maximum operating stresses are calculated and compared to a family of reference Modified Goodman Diagrams. It is best to demonstrate fatigue life capability through testing. This testing is especially important in special cases with unusual spring configurations or the use of non-standard, unique materials. In these cases, MW Components uses reliability engineering techniques to develop test methods. We carefully analyze these test results to ensure our products will meet and exceed customer expectations.

How much energy is stored in a compression spring?

The stored energy is the integral of the load vs. deflection curve. For a spring with a constant rate k deflected x from its free length, the stored energy will equal (kx^2)/2.

What are the common terms used in describing springs?

d – wire diameter

D – mean diameter, the diameter of the spring as measured at the wire centerline

ID – inside diameter, D-d

OD – outside diameter, D+d

Na – number of active coils

Nt – total coils, active coils plus any inactive coils. For a spring with closed ends, Nt=Na+2

FL – free length, the spring length with no load applied

P, F – load or force, the force exerted by the spring under a given deflection

l – instantaneous spring length, the spring length corresponding to a given applied load

x, s – instantaneous deflection, the amount the spring is compressed from free length to length l. x=FL-l

k – spring rate, the derivative of the load-deflection curve. k=P/x=(P2-P1)/(l1-l2)=(P2-P1)/(x2-x1)

C – spring index, the ratio of the mean diameter to the wire diameter. C=D/d

What are residual stresses?

Residual stress forms when a product is welded, cut, cast, or undergoes some other manufacturing processes involving heat or deformation. Residual stress may be beneficial or not, depending on the application.

MWI engineers will answer any questions you might have regarding product design, material selection or application.

MW Spring Design Support

What features need to be toleranced when developing a spring design?

While each application has its own unique needs, there are some general guidelines to follow. The various wire specifications typically include diameter tolerances. So, citing a wire type and specification along with a wire diameter tolerance can be either conflicting or redundant. The application may place some dimensional constraints (i.e. minimum or maximum free length, maximum solid height, maximum OD or minimum ID, etc.). Those significant to your application should be cited on the spring requirements. Spring force output at reference heights are often significant and can be toleranced. In general, spring rate and total coil count are referenced. Flexibility on these items provides the spring maker sufficient freedom to assure that the true key characteristics meet your needs.

What are acceptable design stress levels?

Appropriate stress limits on springs and other components depend on a number of factors. These include material type, operating environment, and whether the loading condition is static or cyclic. When you contact us with your application needs, our engineers are prepared to answer any questions you might have regarding spring design, material selection, or application. Let us help you develop the right spring for your product.

How do you analyze complex spring geometries?

In addition to handbook calculations, MW Components has developed a variety of proprietary models that enable us to accurately model complex geometries. These include variable wire diameter, spring diameter, and pitch.

Should spring ends be ground or unground?

The purpose of grinding spring ends is to distribute the force applied at the spring end across the largest possible surface area. This is typically done when the spring will be compressed between flat end plates.

However, end grinding is one of the most expensive processes in spring manufacturing. If your assembly’s production volume is high enough, it may be more cost-effective to design components that mate with unground spring ends. This way, the load is still distributed across a large surface area without the high cost of end grinding. This is typically the case in automotive McPherson strut assemblies. Another case where grinding might be avoided is large index springs, particularly with very small wire diameter.

What is the difference between "cold winding" and "hot winding" and when is one chosen over the other?

The most common is cold winding. In this case, wire that has already been heat-treated or worked to its final strength level is coiled into a spring. Because the material is already at peak strength, large wire diameters and small indexes are difficult to achieve. The typical maximum wire diameter for this process is 0.625 inches.

The next process is less common, but still falls under cold winding. In this case, wire is coiled in a soft state and then heat-treated to its final strength condition after coiling. For a given piece of coiling equipment, larger wire diameter and/or smaller indexes can be coiled with this method. This process is used for wire sizes up to .875″ in diameter.

The final process is hot winding. In this case, bars are heated to approximately 1700°F and coiled. Usually, the red-hot spring is quenched in oil and tempered to complete the heat treatment. Coiling at such a high temperature enables spring manufacturers to work with far larger bar sizes than could be coiled at room temperature. This process is generally used for bars up to 1.75″ in diameter.

Which process to use is determined first by the size of wire that must be coiled. Once that is determined, the type of material, final wire strength level, and spring index will drive manufacturing toward a process that is most compatible with the available equipment.

How is square wire used to increase the force from torsion spring?

Often customers have a spring application that requires a lot of force in a little space — usually too little space. MW Components believes springs should be designed to fit your product and application, and not the other way around. One way of maximizing this force is to use square wire.

Where should load points be specified in a compression spring?

Load points should be specified between 15% and 85% of the possible deflection in a compression spring. Load points outside of these ranges are typically inconsistent with expected/calculated values. The values are not linear outside of this range and are often unpredictable. The illustration below represents calculated vs. measured values for a load specified outside of the 85% range. The values are as expected until we exceed 85% of the deflection.

MW Components Capabilities

Does MW Components provide product design support?

Yes. Along with our corporate engineering staff, each of our divisions retains their own engineers. These divisional engineers routinely review existing customer designs and work to develop new designs based on customer input.

Does MW Components provide metallurgical analysis and support?

We have a metallurgist on staff ready to address your specific needs. In addition to our in-house lab capabilities, we’ve contracted with strategic labs in the area to ensure that we have immediate access to the latest technology in electron microscopy and electron dispersion spectrography.

Can MW Components develop manufacturing techniques or processes to address specific product needs?

Our skilled engineers will work with you to develop a method to address your specific needs. For example, when faced with a continuing fatigue failure issue on a snap ring used in an automatic transmission, we developed a technique to increase fatigue life. This process development solved the customer’s failure issues without requiring a re-design.

How do you assure product consistency from run to run?

We select the appropriate process control tools for each product based on production quantity and customer requirements. Our facilities are certified in various quality system standards, such as ISO 9000/9001, AS-9100, and TS 16949. For more information on these and other certifications, visit our certifications page.

What is the development process for wire forms?

Customers should involve our engineers during the development process for a wire form product. A slight change in an angle or radius can make a big difference in production times. It can even enable the part to be manufactured in a single operation, rather than in a process that includes costly and time-consuming secondary steps.